Preconditioning repetitive transcranial magnetic stimulation of premotor cortex can reduce but not enhance short-term facilitation of primary motor cortex.
نویسندگان
چکیده
Short trains of suprathreshold 5-Hz repetitive transcranial magnetic stimulation (rTMS) over primary motor cortex (M1) evoke motor potentials (MEPs) in hand muscles that progressively increase in amplitude via a mechanism that is thought to be similar to short-term potentiation described in animal preparations. Long trains of subthreshold rTMS over dorsal premotor cortex (PMd) are known to affect the amplitude of single-pulse MEPs evoked from M1. We tested whether PMd-rTMS affects short-term facilitation in M1. We also explored the effect of PMd-rTMS on M1 responses evoked by single-pulse TMS of different polarities. We tested in 15 healthy subjects short-term facilitation in left M1 (10 suprathreshold TMS pulses at 5 Hz) after applying rTMS to left PMd (1,500 subthreshold pulses at 1 and 5 Hz). In a sample of subjects we delivered single-pulse TMS with different polarities and paired-pulse TMS at short intervals (SICI) after PMd-rTMS. Short-term facilitation in M1 was reduced after applying 1 Hz to PMd, but was unaffected after 5-Hz PMd-rTMS. PMd-rTMS with 1 Hz reduced the amplitude of MEPs evoked by monophasic posteroanterior (PA) or biphasic anteroposterior (AP)-PA but had little effect on MEPs by monophasic AP or biphasic PA-AP single-pulse TMS. PMd-rTMS left SICI unchanged. PMd-rTMS (1 Hz) reduces short-term facilitation in M1 induced by short 5-Hz trains. This effect is likely to be caused by reduced facilitation of I-wave inputs to corticospinal neurons.
منابع مشابه
Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation.
Connections between the premotor cortex and the primary motor cortex are dense and are important in the visual guidance of arm movements. We have shown previously that it is possible to engage these connections in humans and to measure the net amount of inhibition/facilitation from premotor to motor cortex using single-pulse transcranial magnetic stimulation (TMS). The aim of this study was to ...
متن کاملPremotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans.
Recent studies have shown that repetitive transcranial magnetic stimulation (rTMS) over the premotor cortex (PM) modifies the excitability of the ipsilateral primary motor cortex (M1). Transcranial direct current stimulation (tDCS) is a new method to induce neuroplasticity in humans non-invasively. tDCS generates neuroplasticity directly in the cortical area under the electrode, but might also ...
متن کاملMEDIAN NERVE STIMULATION PO TENTIATES THE MU SCLE RESPONSES TO TRANS C RANIAL MAGNETIC STIMULATION
Motor responses evoked by transcranial magnetic stimulation OMS) or transcranial electrical stimulation (TCS) can be facilitated by a prior conditioning stimulus to an afferent nerve. Two facilitation periods are described short (SI), when the nerve stimulus is given near 0 to 10 ms after cranial stimulation, and long (LI), when nerve stimulation is given 25-60 ms before the cranial stimula...
متن کاملIllusory Sensation of Movement Induced by Repetitive Transcranial Magnetic Stimulation
Human movement sense relies on both somatosensory feedback and on knowledge of the motor commands used to produce the movement. We have induced a movement illusion using repetitive transcranial magnetic stimulation over primary motor cortex and dorsal premotor cortex in the absence of limb movement and its associated somatosensory feedback. Afferent and efferent neural signalling was abolished ...
متن کاملEffects of High-Frequency Repetitive Transcranial Magnetic Stimulation on Motor Functions in Patients with Subcortical Stroke
Background: Motor function impairment occurs in approximately two-thirds of patients with subcortical stroke. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique for modulating cortical excitability. Objectives: The present study was designed for assessing the efficacy of high-frequency rTMS (5 Hz) on ipsilesional primary motor cortex in patients with subcortical stro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 99 2 شماره
صفحات -
تاریخ انتشار 2008